The Hausdorff Dimension Fractal Sets and Fractal Dimensions

Joseph Robert Webster

Supervisor: Professor Stephen Power

February 27, 2020

Preliminaries

Definition (Diameter)

The diameter of non-empty $U \subset \mathbb{R}^n$ is

$$|U| := \sup\{|x - y| : x, y \in U\}.$$

Definition (Cover)

A countable/finite collection of non-empty subsets $\{U_i\}$ in \mathbb{R}^n is a cover of a set $F \subset \mathbb{R}^n$ if

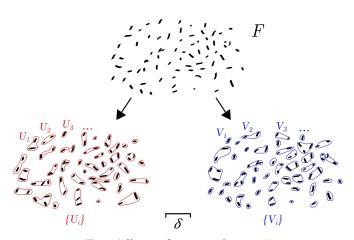
$$F \subset \bigcup_{i=1}^{\infty} U_i$$
.

This is a δ -cover if, for a given $\delta > 0$,

$$|U_i| \le \delta$$

for all i.

Preliminaries

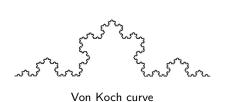


Two different δ -covers of a set F

What is a fractal?

We say F is a fractal if the following are true:

- (i) F has fine structure
- (ii) F cannot be described with traditional geometry
- (iii) Often F has some sort of self-similarity
- (iv) Usually, the 'fractal dimension' of F is greater than its topological dimension
- (v) F is often defined in a simple way



Heighway dragon

Hausdorff measure

Definition (s-dimensional Hausdorff content)

Suppose $F \subset \mathbb{R}^n$ and $s \geq 0$. We define the s-dimensional Hausdorff content as

$$\mathcal{H}^s_\delta(F) := \inf \left\{ \sum_{i=1}^\infty |U_i|^s : \ \{U_i\} \text{ is a δ-cover of } F
ight\}.$$

Definition (s-dimensional Hausdorff measure)

For $F \subset \mathbb{R}^n$, the s-dimensional Hausdorff measure is

$$\mathcal{H}^s(F) := \lim_{\delta \to 0} \mathcal{H}^s_{\delta}(F).$$

Remark. We note that \mathcal{H}^s gives a value on the extended real line $\mathbb{R} \cup \{\infty\}$.

Hausdorff measure



Proposition

Let $F \in \mathbb{R}^n$, and let t > s. If $\mathcal{H}^s(F) < \infty$ then $\mathcal{H}^t(F) = 0$.

Hausdorff measure

Proposition

Let $F \in \mathbb{R}^n$, and let t > s. If $\mathcal{H}^s(F) < \infty$ then $\mathcal{H}^t(F) = 0$.

Proof. Consider $\{U_i\}$, a δ -cover of F. Then

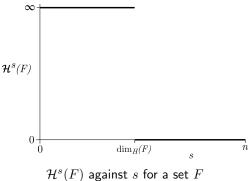
$$\sum_{i=1}^{\infty} |U_i|^t = \sum_{i=1}^{\infty} |U_i|^{t-s} |U_i|^s \le \delta^{t-s} \sum_{i=1}^{\infty} |U_i|^s$$

as $|U_i| \leq \delta$. Taking infima,

$$\mathcal{H}^t_{\delta}(F) \le \delta^{t-s} \mathcal{H}^s_{\delta}(F).$$

Letting $\delta \to 0$, if $\mathcal{H}^s(F) < \infty$, then $\mathcal{H}^t(F) = 0$ for t > s.

Hausdorff dimension



Definition (Hausdorff dimension)

For a set $F \subset \mathbb{R}^n$, we define the Hausdorff dimension;

$$\dim_H(F) := \sup\{s : \mathcal{H}^s(F) = \infty\} = \inf\{s \ge 0 : \mathcal{H}^s(F) = 0\}.$$

Finding the dimension

Middle-thirds Cantor set F

We aim to find an upper bound of $\mathcal{H}^s(F)$ for a specific s.

Each E_k can be covered by 2^k intervals of length $\frac{1}{3^k}$. Letting $\delta=3^{-k}$, it follows that

$$\mathcal{H}_{3-k}^{s}(F) \le \sum_{i=1}^{2^k} |U_i|^s = 2^k \left(\frac{1}{3^k}\right)^s = \left(2 \cdot 3^{-s}\right)^k.$$

Letting $s = \frac{\log 2}{\log 3}$,

$$\mathcal{H}_{3-k}^{s}(F) \le \left(2 \cdot 3^{-\frac{\log 2}{\log 3}}\right)^k = \left(2 \cdot \frac{1}{2}\right)^k = 1^k.$$

Thus when $k \to \infty$, we have $\delta = 3^{-k} \to 0$, so

$$\mathcal{H}^s(F) \leq 1,$$

a non-zero upper bound.

To conclude

Definition (s-dimensional Hausdorff content)

Suppose $F \subset \mathbb{R}^n$ and $s \geq 0$.

$$\mathcal{H}^s_\delta(F) := \inf \left\{ \sum_{i=1}^\infty |U_i|^s : \ \{U_i\} \text{ is a δ-cover of } F
ight\}$$

Definition (s-dimensional Hausdorff measure)

$$\mathcal{H}^s(F):=\lim_{\delta\to 0}\mathcal{H}^s_\delta(F)$$

Definition (Hausdorff dimension)

$$\dim_H(F) := \sup\{s: \mathcal{H}^s(F) = \infty\}$$